	USE CASE 9
	Manual (generic) meta-function edition

	Goal in Context
	Several function editing procedures should be represented and coordinated by a generic meta-function, obtained by manual editing

	Scope & Level
	GEFO-editor –level 4

	Preconditions
	(Knowledge reference for meta-component indexation)

Function management participants and resources databases (semantically indexed) available for concretizations

	Success End Condition
	A usable meta-function is edited (for example for use case 8)

	Failed End Condition
	The meta-function is not edited or not executable

	Primary,

Secondary Actors
	Meta-function administrator, meta-designers, meta-instance managers, meta-executors (piloted designers), meta-analyzers

	Trigger
	An user calls in with a generic meta-function request

	DESCRIPTION
	Step
	Action

	
	(1
	Necessary refinement of some preparatory operations:

1.1 –editing the function specific knowledge space (core semantic referential)
1.2 - managing the meta-participants (function designers database

1.3 - allocating competences to meta-participants

1.4 - managing the meta-resources database (core modules of the function manager)

1.5- allocate competences to meta-resources

	
	2
	Initial administrative operations
2.1 The meta-functions administrator declares a new meta-function and state his editing mode (for example- mode 2)

2.2 He chooses the met-function designers, and maybe the instance's administrators and even the instances executioners

	
	3
	A meta-function designer edits the meta-operation workflow

3.1 – edits meta-operation nodes and chain links (level1)

3.2 – define sub graphs (l1);
3.3 – edits operation internal attributes (parameters) and inter-attributes propagations (l1-2),

3.4 – prepare advices and questions proposed (disposable) before and after the operation execution (l2)

3.5- declares knowledge and competence necessary for meta-operation execution (semantic indexation) (l5)

	
	4
	A function designer edits the instruments layer

4.1- edits instrument (guides, tools, targets, products) nodes and their attributes (parameters) (l3)

4.2- edits guiding instrument competencies (setting explanation power) (l5)

4.3 – declares instrument propagation between operations (o1 produced instrument used as a tool or a guide in o2) (l3)

4.4 – he may operate some instrument (tool or guide) concretizations (eventually inspired by support competence criteria -see use case 5) (l3-5)

	
	5
	A function designer edits the actor layer
5.1- edits actor (executor and support) nodes and their attributes; (l4)

5.2- edits actor competencies (semantic indexing) for executing or supporting the operation (l5)

5.3–(mode 2) if he decides an human actor, he may concretize him completely or partially inspired by the competence criteria (see use case 5 for an explanation)
5.4 - if he decides a machine meta-agent he edits the execution parameters (l3)

5.5 - if he decides a cooperative action, he edits the floor control protocol (l4)

	
	6
	Steps 3-5 are repeated until the editing process is completed

	
	7
	Final administrative operations

The meta-functions administrator close the edition process and set the instantiation mode (for example- mode 2.2)

	
	8
	Preparing instances

A validated meta-function instance's administrator (see step 3)

8.1 Declares a new meta-function's instance

8.2 Decides the instance participation rights

8.3 May concretize the actors for some operations, inspired by the competence criteria (see use case 5)

8.4 May concretize the instruments for some operations, inspired by the competence criteria (see use case 5)

8.5 Closes the instantiation process and state the execution mode (for example- mode 2.2.2)

	
	(9
	Execution of the meta-function (function management)

One or more validated participants execute the instance (see use case 7)

	
	10
	The steps 8-9 are repeated for every new instance

	
	11
	An meta-function observer analyze the results of one ore more instance executions, and may inspire another meta-function life cycle (1-10)

	
	
	

	EXTENSIONS
	Step
	Branching Action

	
	2a
	The administrator does not choose meta-editors

2a1. He is the only one who can continue editing

The administrator does not choose instance mangers

2a2 The meta-function is not executable

The administrator do not choose instance executioners (the normal case)

2a3 The editors can not operate actor concretizations

	
	3a
	The editor needs a memorized operation

3a1 It is possible to add a complete human or machine meta-operation, from an meta-operation library

	
	3b
	The editor want to memorize a meta-operation

3b1 It is possible to add a complete edited meta-operation (all the components and their attributes) to the meta-operation library, for a later reuse- see 6a)

	
	3c
	The editor wants to import a previous edited meta-function

3c1 He can concatenate the imported meta-function as a sub graph for an operation node

	
	3d
	The editor wants to import a compatible procedure workflow

3c1 He can concatenate the imported workflow as a sub graph for an operation node

	
	5.4a
	There are a lot of machine operations to edit.

5.4a1 The construction of this region of the meta-function by generation could be preferable

	
	6a
	The editor wants to export an edited meta-function

3c1 He can produce various graphical, structural or executable workflow formats (gif, PowerPoint, IMS-LD, UML, etc)

	
	7a
	The edition should be continued for a meta-function already compiled for execution

7a1 Resume the editing process for a new version of the meta-function

	SUB-VARIATIONS
	
	Branching Action

	
	2
	The editing modes may be:

0- without concretization within editing phase

1- concretization without competence criteria

2 - concretization inspired by competence criteria

3 - concretization restricted by competence criteria

4 –concretization assisted by competence agents

	
	2.4
	-The editable advices types depend on the information edited in the other steps (competences etc.)

- External advise editing modules may be used

	
	4.4
	The concretization depends on the editing mode (see 2), the node topology and the competence situation:

- Execution with abstract actor (i<=a<o<=f)

- Execution with concretized participant (i<=p<o<=f)

(more explanations in use case 5)

	
	5.3
	The concretization depends on editing the mode (see 2), the node topology and the competence situation:

- Execution without support (a>=o)

- Execution with abstract or concretized support (i<=a<o<=f)

(more explanations in use case 5)

	

	6
	6a The edition should be continued (modified) at another date by the same (or another) meta-function designer

6b The parallel cooperative editing is also possible. Any meta-function designer can observe the evolution of the shared function. He can also modify the elements in his reserved sub graph

6c One of the meta-function editors may reserve a sub-graph and continue a offline edition; when his work is finished, he can publish the reserved sub-graph and liberate the edition on it)

	
	7
	The instantiation mode may be

0- without concretization within instantiation phase

1- concretization without competence criteria

2 - concretization inspired by competence criteria

3 - concretization restricted by competence criteria

4 –concretization assisted by competence agents

	
	8
	8a For the concretization situations some observations as for 4.4

8b The execution concretization modes and process depend on the editing and instantiation modes. After a mode 2 edition and a mode 2 instantiation the execution mode may be

0- without concretization within execution phase (all the resources and the participants are determined)

1- concretization without competence criteria (used only i the previously concretization phases)

2 - concretization inspired by competence criteria (if the previous allocations where not completely determined)

3 - concretization restricted by competence criteria

4 –concretization assisted by competence agents (if real-time matching is desired)

	
	9
	For the concretization situations see use case 5

